EN PT


0078/2025 - Machine Learning and Simulation: pathways to efficient emergency care in Brazil
Aprendizado de Máquina e Simulação: caminhos para um atendimento de emergência eficiente no Brasil

Author:

• Arthur Pinheiro de Araújo Costa - Costa, A.P.A - <arthurcosta.araujo@ime.eb.br>
ORCID: 0000-0003-4596-0649

Co-author(s):

• Vitor Pinheiro de Araújo Costa - Costa, V.P.A - <pinheirovpac@fab.mil.br>
ORCID: 0009-0004-9436-4362
• Daniel Augusto de Moura Pereira - Pereira, D.A.M - <danielmoura@ufcg.edu.br>
ORCID: 0000-0002-7951-6098
• Igor Pinheiro de Araújo Costa - Costa, I.P.A - <costa_igor@id.uff.br>
ORCID: 0000-0001-9892-6327
• Miguel Ângelo Lellis Moreira - Moreira, M.A.L - <miguellellis@hotmail.com>
ORCID: 0000-0002-5179-1047
• Gioliano de Oliveira Braga - Braga, G.O - <gioliveirabraga@gmail.com>
ORCID: 0009-0002-3147-7824
• Marcos dos Santos - Santos, M. - <marcosdossantos_doutorado_uff@yahoo.com.br>
ORCID: 0000-0003-1533-5535
• Carlos Francisco Simões Gomes - Gomes, C.F.S - <cfsg1@bol.com.br>
ORCID: 0000-0002-6865-0275


Abstract:

Modeling and Simulation (M&S) allows for the reproduction of medical procedures and services, understanding disease progression, and predicting treatment responses without risks to real patients. This study aims to simulate the ambulance service system of the Mobile Emergency Care Service (SAMU) in a region of Brazil, using Arena software and Machine Learning (ML). The quantitative methodology combines mathematical modeling and a case study to analyze variables such as the number of ambulances, patient arrivals, waiting times, and workload. Using the Manchester Protocol as a reference, the Arena results feed a regression model to relate waiting times and the number of ambulances. The integration of these techniques allowed for predictions regarding the impact of different resource configurations. Based on real data, the numerical results indicated reduced waiting times with increased ambulances and optimized resource allocation. Thus, in addition to contributing to the operational efficiency of mobile emergency services, the findings strengthen the resilient performance of the Unified Health System (SUS) in the face of adversities.

Keywords:

Health System Resilience, SUS, SAMU, Computer Simulation, Machine Learning.

Content:

Access Issue in Scielo

Other languages:







How to

Cite

Costa, A.P.A, Costa, V.P.A, Pereira, D.A.M, Costa, I.P.A, Moreira, M.A.L, Braga, G.O, Santos, M., Gomes, C.F.S. Machine Learning and Simulation: pathways to efficient emergency care in Brazil. Cien Saude Colet [periódico na internet] (2025/Mar). [Citado em 27/07/2025]. Está disponível em: http://cienciaesaudecoletiva.com.br/en/articles/machine-learning-and-simulation-pathways-to-efficient-emergency-care-in-brazil/19554?id=19554



Execution



Sponsors